已知函數(shù),若f[f(x)]=2,則x的取值范圍是(    )

A.                       B.[-1,1] 

C.(-∞,-1)∪(1,+∞)  D.{2}∪[-1,1]

 

【答案】

D

【解析】若成立.

符合要求.所以x的取值范圍是{2}∪[-1,1]

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實(shí)數(shù).
(1)若曲線y=f(x)在點(diǎn)(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對(duì)數(shù)的底數(shù).
(1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)當(dāng)a=e,b=4時(shí),求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點(diǎn);
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足:(x-1)[f′(x)-f(x)]>0,f(2-x)=f(x)e2-2x,則下列判斷一定正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇0,1],且f(x)的圖象連續(xù)不間斷.若函數(shù)f(x)滿足:對(duì)于給定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),則稱f(x)具有性質(zhì)P(m).
(Ⅰ)已知函數(shù)f(x)=(x-
1
2
2,x∈[0,1],判斷f(x)是否具有性質(zhì)P(
1
3
),并說(shuō)明理由;
(Ⅱ)已知函數(shù) f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性質(zhì)P(m),求m的最大值;
(Ⅲ)若函數(shù)f(x)的定義域?yàn)閇0,1],且f(x)的圖象連續(xù)不間斷,又滿足f(0)=f(1),求證:對(duì)任意k∈N*且k≥2,函數(shù)f(x)具有性質(zhì)P(
1
k
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

同步練習(xí)冊(cè)答案