若將函數(shù)y=f(x)的圖象按向量平移后得到函數(shù)的圖象,則函數(shù)y=f(x)單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.
【答案】分析:由題意可得,把到函數(shù)的圖象 向左平移個單位再向下平移1個單位,即得函數(shù)y=f(x)的圖象,故 f(x)=2sin(x-).由2kπ-≤x-≤2kπ+,k∈z,求得x的范圍,即得單調(diào)增區(qū)間.
解答:解:由題意可得,把到函數(shù)的圖象 向左平移個單位再向下平移1個單位,
即得函數(shù)y=f(x)的圖象,∴f(x)=2sin(x+-)+1-1=2sin(x-).
由 2kπ-≤x-≤2kπ+,k∈z,解得  2kπ+≤x≤2kπ+,
故其單調(diào)增區(qū)間為 ,
故選 A.
點評:本題考查函數(shù)圖象的平移,正弦函數(shù)的單調(diào)增區(qū)間的求法,得到函數(shù)y=f(x)的 解析式,時間誒體的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、若將函數(shù)y=f(x)的圖象按向量a平移,使圖象上點的坐標由(1,0)變?yōu)椋?,2),則平移后的圖象的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
cosωxsinωx(ω>0)
,且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若將函數(shù)y=f(x)的圖象向右平移
π
12
個單位長度,再將所得到的圖象上各點的橫坐標伸長到原來的4倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx-
3
cosωx(ω>0)
的圖象與x軸的兩個相鄰交點的距離等于
π
2
,若將函數(shù)y=f(x)的圖象向左平移
π
6
個單位長度得到函數(shù)y=g(x)的圖象,則y=g(x)的解析式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2msin2x-2
3
msinxcosx+n
,(m>0)的定義域為[0,
π
2
]
,值域為[-5,4].
(1)求m、n的值;
(2)若將函數(shù)y=f(x),x∈R的圖象按向量
a
平移后關(guān)于原點中心對稱,求向量
a
的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)y=f(x)的圖象按向量a=(
π
6
,1)
平移后得到函數(shù)y=2sin(x-
6
)+1
的圖象,則函數(shù)y=f(x)單調(diào)遞增區(qū)間是
[
π
6
+2kπ,
6
+2kπ](k∈Z)
[
π
6
+2kπ,
6
+2kπ](k∈Z)

查看答案和解析>>

同步練習(xí)冊答案