已知m,n為兩個(gè)不相等的非零實(shí)數(shù),則方程mx-y+n=0nx2+my2=mn所表示的曲線可能是(  )

 

 

C

【解析】通過直線斜率等于m,y軸上的截距為n,從直線中可判斷m,n的正負(fù),從而確定nx2+my2=mn為橢圓還是雙曲線,選項(xiàng)C,從直線可以看出m>0,n<0,nx2+my2=mn可化為+=1,即焦點(diǎn)在x軸上的雙曲線.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知a1=1,a2=4,an+2=4an+1+an,bn=,nN+.

(1)b1,b2,b3的值.

(2)設(shè)cn=bnbn+1,Sn為數(shù)列{cn}的前n項(xiàng)和,求證: Sn17n.

(3)求證:|b2n-bn|<·.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F2x軸上,離心率為.F1的直線lCA,B兩點(diǎn),且△ABF2的周長為16,那么C的方程為      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

已知拋物線y2=2px(p>0)上的一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線-y2=1的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)直線l:2x+y-2=0與橢圓x2+=1的交點(diǎn)為A,B,點(diǎn)P是橢圓上的動(dòng)點(diǎn),則使得△PAB的面積為的點(diǎn)P的個(gè)數(shù)為   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:解答題

橢圓C1:+=1(a>b>0)的左、右頂點(diǎn)分別為A,B,點(diǎn)P是雙曲線C2:-=1在第一象限內(nèi)的圖象上一點(diǎn),直線AP,BP與橢圓C1分別交于C,D點(diǎn),SACD=SPCD.

(1)P點(diǎn)的坐標(biāo).

(2)能否使直線CD過橢圓C1的右焦點(diǎn),若能,求出此時(shí)雙曲線C2的離心率;若不能,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程為y=x,則雙曲線的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

在同一坐標(biāo)系下,直線ax+by=ab和圓(x-a)2+(y-b)2=r2(ab0,r>0)的圖象可能是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

已知雙曲線-y2=1(a>1)的一條準(zhǔn)線為x=,則該雙曲線的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案