若loga(a+1)<loga(2a)<0,則a的取值范圍是( 。
A、0<a<
1
2
B、
1
2
<a<1
C、0<a<1
D、a>0且a≠1
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別討論a的取值范圍,利用對數(shù)函數(shù)的單調(diào)性和對數(shù)不等式的解法進行求解.
解答: 解:由loga(a+1)<loga2a<0,得loga(a+1)<loga2a<loga1,
當(dāng)a>1,則a+1<2a<1,所以此時不等式無解,
當(dāng)0<a<1時,則a+1>2a>1,解得
1
2
<a<1,
故選:B.
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性的性質(zhì)的應(yīng)用,注意要對底數(shù)a進行分類討論.考查學(xué)生的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是實數(shù),則“|a-b|≥a+b”是“ab<0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3cos(2x+φ)的圖象向右平移
π
3
后關(guān)于點(
π
6
,0)對稱,那么|φ|的最小值為( 。
A、
6
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖直角梯形ABCD中,AB∥DC,∠DAB=90°,DC=1,AB=3,AD=
3
,點E在邊BC上且AC、AE、AB成等比數(shù)列,若
CE
EB
,則λ=(  )
A、
3+
15
3
B、
3+2
15
3
C、
87
-9
3
D、
87
+9
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中B=
π
3
且sinA:sinC=3:1,則b:c的值為(  )
A、
3
B、
7
C、2
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為R的球的內(nèi)部裝有4個相同半徑r的小球,則小球半徑r可能的最大值為( 。
A、
3
2+
3
R
B、
6
3+
6
R
C、
1
1+
3
R
D、
15
2+
5
R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x<
π
2
,且t是大于O的常數(shù),f(x)=
1
sinx
+
t
1-sinx
的最小值為9,則t的值為( 。
A、4
B、3
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程:x2+y2-4x+2y+5m=0
(1)當(dāng)m為何值時,此方程表示圓?
(2)若m=0,是否存在過點P(0,2)的直線l與曲線C交于A,B兩點,且|PA|=|AB|,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+3,在x∈[-1,1]上的最小值為-3,求a的值.

查看答案和解析>>

同步練習(xí)冊答案