如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值

(1);(2)

解析試題分析:(1)要掌握橢圓的幾何性質(zhì)以及圖形中對(duì)應(yīng)的線段,上圖中,,, (2)可用代數(shù)法,以為參數(shù),寫(xiě)出直線方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而求出的面積,再利用面積為,求出,即求出;當(dāng)然也可幾何方法,由于,在中利用余弦定理,可把表示出來(lái),再利用面積為,可求出 
試題解析:(1)由題意可知,△AF1F2為等邊三角形,a=2c,所以e=    3
(2)( 方法一)a2=4c2,b2=3c2
直線AB的方程可為y=-(x-c)
將其代入橢圓方程3x2+4y2=12c2,               5
得B                7
所以|AB|=·c         9
由S△AF1B=|AF1|·|AB|sin∠F1AB         10
a2=40
解得a=10,b=5               12
(方法二)設(shè)|AB|=t
因?yàn)閨AF2|=a,所以|BF2|=t-a
由橢圓定義|BF1|+|BF2|=2a可知,|BF1|=3a-t
再由余弦定理(3a-t)2=a2+t2-2atcos60°可得,
t=a
a2=40知,a=10,b=5 
考點(diǎn):(1)橢圓的離心率;(2)橢圓的定義和三角形的面積、余弦定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問(wèn)在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄A經(jīng)過(guò)點(diǎn),且和直線相切,
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知曲線C上一點(diǎn)M,且5,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn)為直線上的點(diǎn),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿(mǎn)足||,|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿(mǎn)足||·||=,則稱(chēng)點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問(wèn):對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在軸上方有一段曲線弧,其端點(diǎn)、軸上(但不屬于),對(duì)上任一點(diǎn)及點(diǎn),,滿(mǎn)足:.直線,分別交直線兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC中, 點(diǎn)A,B的坐標(biāo)分別為A(-,0),B(,0)點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C坐標(biāo)為(,1),求以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程:
(Ⅱ)過(guò)點(diǎn)P(m,0)作傾斜角為的直線l交(1)中曲線于M,N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案