【題目】已知函數(shù)f(x)=x3﹣12x.
(1)求f′(1)的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

【答案】
(1)解:因為f(x)=x3﹣12x,

所以f′(x)=3x2﹣12,所以f′(1)=﹣9


(2)解:f′(x)=3x2﹣12,

解f′(x)>0,得x<﹣2或x>2.

解f′(x)<0,得﹣2<x<2.

所以(﹣∞,﹣2)和(2,+∞)為函數(shù)f(x)的單調(diào)增區(qū)間,(﹣2,2)為函數(shù)f(x)的單調(diào)減區(qū)間


【解析】(1)求導(dǎo)數(shù),即可求f′(1)的值;(2)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求函數(shù)f(x)的單調(diào)區(qū)間.
【考點精析】掌握基本求導(dǎo)法則和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo);一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀,現(xiàn)采用隨機模擬實驗的方法估計某人投擲飛鏢的情況:先由計算器產(chǎn)生隨機數(shù)0或1,用0表示該次投標(biāo)未在8環(huán)以上,用1表示該次投標(biāo)在8環(huán)以上;再以每三個隨機數(shù)作為一組,代表一輪的結(jié)果,經(jīng)隨機模擬實驗產(chǎn)生了如下20組隨機數(shù):

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

據(jù)此估計,該選手投擲飛鏢三輪,至少有一輪可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中.

(1)求函數(shù)的極大值點;

(2)當(dāng)時,若在上至少存在一點,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中點,面PACABCD

(1)證明:ED∥面PAB

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知曲線 , ,設(shè)交于點.

(1)求點的極坐標(biāo);

(2)若直線過點,且與曲線交于兩不同的點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的離心率為,且點在橢圓上,①求橢圓的方程;

②設(shè)分別為橢圓的右頂點和上頂點,直線軸和軸相交于點,求直線的方程;

(2)設(shè) 點的直線與橢圓交于兩點,且均在的右側(cè), ,求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案