設(shè)全集U=R,A={x|x<2},B={x||x-1|≤3},則(?UA)∩B=(  )
分析:先根據(jù)全集為R,求出集合A的補(bǔ)集,然后求出集合A的補(bǔ)集與集合B的交集即可.
解答:解:由全集U=R,集合A={x|x<2},B={x||x-1|≤3}={x|-2≤x≤4},
得到?UA={x|x≥2},
則(?UA)∩B={x|x≥2}∩{x|-2≤x≤4}=[2,4].
故選C.
點(diǎn)評(píng):此題考查了補(bǔ)集及交集的混合運(yùn)算,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|
x-2
x+1
<0}
,B={x|sin x≥
3
2
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|
x-a
x+b
≥0}
,?UA=(-1,-a),則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范圍;
(2)若(CUA)∩(CUB)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|ax+1=0},B={1,2},若A∩(?UB)=?,則實(shí)數(shù)a的取值集合是( 。
A、{0}
B、?
C、{-1,-
1
2
}
D、{-1,-
1
2
,0}

查看答案和解析>>

同步練習(xí)冊(cè)答案