【題目】如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)延長至點,使為平面內(nèi)的動點,若直線與平面所成的角為,且,求點到點的距離的最小值.
【答案】(1)見解析(2)
【解析】試題分析:(1)由于直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,,利用面面垂直的性質(zhì)可得平面,進而由面面垂直的判定定理可得結(jié)論;(2)由(Ⅰ)可知兩兩垂直.分別以為軸、軸、軸建立空間直角坐標系,的坐標為,求得,利用向量垂直數(shù)量積為零求出平面的一個法向量,利用空間向量夾角余弦公式可得,進而可得,進而可得結(jié)果.
試題解析:(Ⅰ)直角梯形中,,直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,,又平面平面,平面,平面平面.
(Ⅱ)由(Ⅰ)可知兩兩垂直.分別以為軸、軸、軸建立空間直角坐標系如圖所示.由已知,所以
,設是平面的法向量,則,即,取,得.
設的坐標為,則,由,
得,,,
,所以,
當時,,點到點的距離的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某中學在高二年級開設大學先修課程《線性代數(shù)》,共有50名同學選修,其中男同學30名,女同學20名.為了對這門課程的教學效果進行評估,學校按性別采用分層抽樣的方法抽取5人進行考核.
(Ⅰ)求抽取的5人中男、女同學的人數(shù);
(Ⅱ)考核前,評估小組打算從抽取的5人中隨機選出2名同學進行訪談,求選出的兩名同學中恰有一名女同學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人.
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司招聘員工,先由兩位專家面試,若兩位專家都同意通過,則視作通過初審予以錄用;若兩位專家都未同意通過,則視作未通過初審不予錄用;當這兩位專家意見不一致時,再由第三位專家進行復審,若能通過復審則予以錄用,否則不予錄用.設應聘人員獲得每位初審專家通過的概率為0.5,復審能通過的概率為0.3,各專家評審的結(jié)果相互獨立.
(Ⅰ)求某應聘人員被錄用的概率;
(Ⅱ)若4人應聘,設X為被錄用的人數(shù),試求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若關(guān)于x的不等式e2x﹣alnxa恒成立,則實數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷增長,個人購買家庭轎車已不再是一種時尚車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關(guān)心的問題某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限與所支出的總費用(萬元)有如表的數(shù)據(jù)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
總費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在給出的坐標系中作出散點圖;
(2)求線性回歸方程中的、;
(3)估計使用年限為年時,車的使用總費用是多少?
(最小二乘法求線性回歸方程系數(shù)公式, .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)欲做一個介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面(由扇形挖去扇形后構(gòu)成的).已知,線段與弧、弧的長度之和為米,圓心角為弧度.
(1)求關(guān)于的函數(shù)解析式;
(2)記銘牌的截面面積為,試問取何值時,的值最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過的直線與橢圓交于兩點,的周長為.
(1)求橢圓的方程;
(2)如圖,點,分別是橢圓的左頂點、左焦點,直線與橢圓交于不同的兩點、(、都在軸上方).且.證明:直線過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com