已知數(shù)列
的各項均為正數(shù),其前
項和為
,且
,
,數(shù)列
是首項和公比均為
的等比數(shù)列.
(1)求證數(shù)列
是等差數(shù)列;
(2)若
,求數(shù)列
的前
項和
.
(1)證明過程見試題解析(2)
試題分析:(1)由題知
可化為
易證數(shù)列
是等差數(shù)列;(2)由
是等差數(shù)列,求出通項公式,進而求出
,又據(jù)題意易求得
,知
利用分組求和與錯位相減法可求得前n項和
.
試題解析:解:(1)由
,得
,又
的各項均為正數(shù),所以
,
,
∵
,∴
,∴
,
,
所以數(shù)列
是等差數(shù)列;
(2)∵
,∴
,
;
∵
,
∴
,先求數(shù)列
的前
項和
,
∵
,
,
∴
,
,所以
,∴
。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
n項和為
,
(1)證明:數(shù)列
是等差數(shù)列,并求
;
(2)設(shè)
,求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知兩個等差數(shù)列
和
的前n項和分別為
和
,且
,則使得
為整數(shù)的正整數(shù)n的個數(shù)是__________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)等差數(shù)列
的前
項和為
,首項
,
.則以下關(guān)于數(shù)列
的判斷中正確的個數(shù)有( )
①
;②
;③
;④前
項和
中最大的項為第六項
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在等差數(shù)列
中,若公差
,且
成等比數(shù)列,則公比
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等比數(shù)列
的前
項和為
,且4
,2
,
成等差數(shù)列。若
=1,則
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若
為等差數(shù)列,
數(shù)列
滿足
則
( )
查看答案和解析>>