l,d為原點(diǎn)到l的距離,分別為點(diǎn)A到兩焦點(diǎn)的距離.求證:為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(
3
,0),且離心率e=
3
2

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(2,1),不經(jīng)過原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,點(diǎn)P到直線l的距離為d,且M,O,P三點(diǎn)共線.求
3
5
|AB|2+
5
4
d2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P在橢圓上,且△PF1F2的周長為6.
(I)求橢圓C的方程;
(II)若點(diǎn)P的坐標(biāo)為(2,1),不過原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,點(diǎn)P到直線l的距離為d,且M,O,P三點(diǎn)共線.求
12
13
|AB|2+
13
16
d2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

線l過原點(diǎn),且點(diǎn)(2,1)到l的距離為2,則l的方程為(    )

A.y=x                           B.y=x

C.x=0或y=x                     D.x=0或y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:選擇題

選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

22.(本小題滿分10分)選修4—1幾何證明選講

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F。

   (I)求證:DE是⊙O的切線;

   (II)若的值.

 

23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程

        設(shè)直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為

   (I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

   (II)求曲線C上的動點(diǎn)P到直線l的最大距離。

24.(本小題滿分10分)選修4—5不等式選講

        對于任意的實(shí)數(shù)恒成立,記實(shí)數(shù)M的最大值是m。

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

同步練習(xí)冊答案