【題目】某小學對一年級的甲、乙兩個班進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”影響的試驗,其中甲班為試驗班(實施了數(shù)學學前教育),乙班為對比班(和甲班一樣進行常規(guī)教學,但沒有實施數(shù)學學前教育),在期末測試后得到如下數(shù)據(jù):

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

30

20

50

乙班

25

25

50

總計

55

45

100

能否在犯錯誤的概率不超過0.01的前提下,認為進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”有積極作用?

【答案】認為進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”有積極作用.

【解析】

根據(jù)所給的數(shù)據(jù)列出列聯(lián)表,做出觀測值,把觀測值同臨界值進行比較,得到結果

因為K2≈1.010<6.635,

所以不能在犯錯誤的概率不超過0.01的前提下,認為進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”有積極作用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).

(1)當a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;

(2)當a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;

(3)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x(元)

9

9.2

9.4

9.6

9.8

10

銷量y(件)

100

94

93

90

85

78

(1)求回歸直線方程求回歸直線方程.

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x∈R,y∈R,若復數(shù)(x2+y2-4)+(x-y)i是純虛數(shù),則點(x,y)的軌跡是(  )

A. 以原點為圓心,以2為半徑的圓

B. 兩個點,其坐標為(2,2),(-2,-2)

C. 以原點為圓心,以2為半徑的圓和過原點的一條直線

D. 以原點為圓心,以2為半徑的圓,并且除去兩點(,),(-,-)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形ABC的三邊長為abc,且其中任意兩邊長均不相等.,,成等差數(shù)列.1)比較的大小,并證明你的結論;(2)求證B不可能是鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當n≥6時,求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜率為k的直線l經(jīng)過點(-1,0),且與拋物線C:y2=2px(p>0,p為常數(shù))交于不同的兩點M,N.k=時,弦MN的長為.

(1)求拋物線C的標準方程.

(2)過點M的直線交拋物線于另一點Q,且直線MQ經(jīng)過點B(1,-1),判斷直線NQ是否過定點?若過定點,求出該點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當產(chǎn)品中此種元素的含量大于18毫克時,認定該產(chǎn)品為優(yōu)等品.

(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產(chǎn)品中隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)若,求經(jīng)過點且與曲線只有一個公共點的直線方程:

(2)若,請在直角坐標平面內(nèi)找出縱坐標不同的兩個點,此兩點滿足條件:無論如何變化,這兩個點都不在曲線上;

(3)若曲線與線段有公共點,求的最小值。

查看答案和解析>>

同步練習冊答案