C
分析:實(shí)系數(shù)方程x
2+(a+1)x+a+b+1=0的兩個(gè)根x
1,x
2分別作為橢圓和雙曲線的離心率,根據(jù)判別式大于0,令a為橫軸,b為縱軸,建立平面直角坐標(biāo)系,作出這三個(gè)不等式所對(duì)應(yīng)的平面區(qū)域S,設(shè)P(a,b)是平面區(qū)域S內(nèi)的任意一點(diǎn),A(-1,1),則可知
的幾何意義是直線的斜率,進(jìn)而可求得范圍.
解答:f(x)=x
2+(a+1)x+(a+b+1)
依題意f(x)=0的兩個(gè)根x
1,x
2分別作為橢圓和雙曲線的離心率
故 0<x
1<1<x
2
根據(jù)一元二次方程根的分布,可得關(guān)于實(shí)系數(shù)a,b的約束條件:
判別式=(a+1)
2-4(a+b+1)=(a-1)
2-4b-4>0
f(0)=a+b+1>0,f(1)=2a+b+3<0
令a為橫軸,b為縱軸,建立平面直角坐標(biāo)系,作出這三個(gè)不等式所對(duì)應(yīng)的平面區(qū)域S,
設(shè)P(a,b)是平面區(qū)域S內(nèi)的任意一點(diǎn),A(-1,1),k=
則k的幾何意義是直線PA的斜率.
作圖,得-2<k<-
故選C
點(diǎn)評(píng):本題主要考查了圓錐曲線的綜合知識(shí).涉及到了函數(shù)的根的分布,多項(xiàng)式恒等等知識(shí).屬中檔題.