分析 根據(jù)正切函數(shù)的和與差的公式求出即可.
解答 解:tna$\frac{π}{3}$=tan[$(\frac{π}{6}-θ)+(\frac{π}{6}+θ)$]=$\frac{tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)}{1-tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)}$=$\sqrt{3}$.
即$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)$=$\sqrt{3}$-$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$).、
故得:$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$=$\sqrt{3}$-$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$)+$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$)=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題考查正切函數(shù)的兩角和與差公式的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p是假命題;¬p:?x∈R,log3(3x+1)>0 | B. | p是假命題;¬p:?x∈R,log3(3x+1)≤0 | ||
C. | p是真命題;¬p:?x∈R,log3(3x+1)>0 | D. | p是真命題;¬p:?x∈R,log3(3x+1)≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=1 | B. | x+1=0 | C. | y=0 | D. | x-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 16 | C. | $10\sqrt{3}$ | D. | $8\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “至少有一個(gè)黑球”與“都是黑球” | |
B. | “至少有一個(gè)黑球”與“至少有一個(gè)紅球” | |
C. | “恰好有一個(gè)黑球”與“恰好有兩個(gè)黑球” | |
D. | “至少有一個(gè)黑球”與“都是紅球” |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com