【題目】已知某中學高一、高二、高三三個年級的青年學生志愿者人數(shù)分別為180,120,60,現(xiàn)采用分層抽樣的方法從中抽取6名同學去森林公園風景區(qū)參加“保護鳥禽,愛我森林”宣傳活動.

1)應從高一、高二、高三三個年級的學生志愿者中分別抽取多少人?

2)設抽取的6名同學分別用A,B,CD,EF表示,現(xiàn)從中隨機抽取2名學生承擔分發(fā)宣傳材料的工作設事件M=“抽取的2名學生來自高一年級”,求事件M發(fā)生的概率.

【答案】1)從高一、高二、高三三個年級的學生志愿者中分別抽取3人,2人,1人,(2

【解析】

(1)根據(jù)分層抽樣的方法求解即可.

(2)利用古典概型的方法枚舉所有基本事件求解即可.

1)由己知,高一、高二、高三三個年級的學生志愿者人數(shù)之比為321,

由于采用分層抽樣的方法從中抽取6名學生,抽樣比為

故從高一、高二、高三三個年級的學生志愿者中分別抽取3人,2人,1人.

2)從抽取的6名學生中隨機抽取2名同學的所有可能結(jié)果為,共15種.

不妨設抽取的6名學生中,來自高一的是A,BC,則從抽取的6名學生中隨機抽取2名同學來自高一年級的所有可能結(jié)果為3種,

所以事件M發(fā)生的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)悉,2017年教育機器人全球市場規(guī)模已達到8.19億美元,中國占據(jù)全球市場份額10.8%.通過簡單隨機抽樣得到40家中國機器人制造企業(yè),下圖是40家企業(yè)機器人的產(chǎn)值頻率分布直方圖.

(1)求的值;

(2)在上述抽取的40個企業(yè)中任取3個,抽到產(chǎn)值小于500萬元的企業(yè)不超過兩個的概率是多少?

(3)在上述抽取的40個企業(yè)中任取2個,設為產(chǎn)值不超過500萬元的企業(yè)個數(shù)減去超過500萬元的企業(yè)個數(shù)的差值,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學調(diào)查了某班全部名同學參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)


參加書法社團

未參加書法社團

參加演講社團



未參加演講社團



1)從該班隨機選名同學,求該同學至少參加上述一個社團的概率;

2)在既參加書法社團又參加演講社團的名同學中,有5名男同學名女同學現(xiàn)從這名男同學和名女同學中各隨機選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)x,滿足,則稱局部奇函數(shù)。為定義在上的局部奇函數(shù);q:曲線x軸交于不同的兩點。

(1)p為真時,求m的取值范圍.

(2)為真命題,且為假命題,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意度進行調(diào)查,并隨機抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為滿意,否則為不滿意,請完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計

16

14

合計

30

)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業(yè)員工“性別”與“工作是否滿意”有關?

參考數(shù)據(jù):

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)若點的直角坐標為,曲線與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為直角梯形,試作出繞其各條邊所在的直線旋轉(zhuǎn)所得到的幾何體.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左頂點在圓上.

(1)求橢圓的方程;

(2)若點為橢圓上不同于點 的點,直線與圓的另一個交點為.是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當時,在定義域內(nèi)恒成立,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案