(本題滿分12分)已知圓x2+y2+x-6y+m=0和直線x+2y-3=0交于PQ兩點(diǎn).

(Ⅰ)求實(shí)數(shù)m的取值范圍;

(Ⅱ)求以PQ為直徑且過坐標(biāo)原點(diǎn)的圓的方程.

 

【答案】

解:(Ⅰ)

(法一)圓C:,圓心,半徑

圓心到直線的距離,得;(4分)

(法二)由,有,得m<8;(或者聯(lián)立得)(4分)

(Ⅱ)設(shè)P(x1,y1), Q(x2,y2),由 

由于以PQ為直徑的圓過原點(diǎn),∴OPOQ, ∴x1x2+y1y2=0,

x1x2=9-6(y1+y2)+4y1y2= ,∴   解得m=3.(8分)

故P(1,1), Q(-3,3),圓的方程為,即.(12分)

(法二)設(shè)過PQ的圓的方程為

,

∵圓過原點(diǎn),∴,又以PQ為直徑,則取最小值,此時(shí),故m=3,圓的方程為,即.(12分)

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、.,且.(1)求的大。唬2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,,是它的左,右焦點(diǎn).

(1)若,且,,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案