設(shè)極點(diǎn)O到直線l的距離為d,由點(diǎn)O向直線l作垂線,由極軸到垂線OA的角度為α(如圖所示).求直線l的極坐標(biāo)方程.

答案:略
解析:

解:在直線l上任取一點(diǎn)M(ρ,θ).在直角三角形OMA中,用三角知識得ρcos(αθ)=d,即

這就是直線l的極坐標(biāo)方程.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一個頂點(diǎn)為M(0,1),離心率e=
6
3

(1)求橢圓的方程;
(2)設(shè)直線l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1:y=2x與直線l2:x+y=3交于P點(diǎn).
(1)當(dāng)直線l過P點(diǎn),且與直線l0:2x+y=0平行時,求直線l的方程.
(2)當(dāng)直線l過P點(diǎn),且原點(diǎn)O到直線l的距離為1時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的動點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2k1k2=-
1
4

(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N.
①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足kBMkBN=-
1
4
,證明直線l過定點(diǎn),并求出這個定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•深圳模擬)已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的長半軸是短半軸的
3
倍,直線x-y+
2
=0
經(jīng)過
橢圓C的一個焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)一條直線 l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案