定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上單調(diào)遞增,a=f(3),b=f(
2
),c=f(2),則a,b,c大小關系是( 。
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a
分析:先根據(jù)條件推斷出函數(shù)為以2為周期的函數(shù),根據(jù)f(x)是偶函數(shù),在[-1,0]上單調(diào)遞增推斷出在[0,1]上是減函數(shù).減函數(shù),進而利用周期性使a=f(1),b=f(2-
2
),c=f(2)=f(0)進而利用自變量的大小求得函數(shù)的大小,則a,b,c的大小可知.
解答:解:由條件f(x+1)=-f(x),可以得:
f(x+2)=f((x+1)+1)=-f(x+1)=f(x),所以f(x)是個周期函數(shù).周期為2.
又因為f(x)是偶函數(shù),所以圖象在[0,1]上是減函數(shù).
a=f(3)=f(1+2)=f(1),
b=f(
2
)=f(
2
-2)=f(2-
2

c=f(2)=f(0)
0<2-
2
<1
所以a<b<c
故選D
點評:本題主要考查了函數(shù)單調(diào)性,周期性和奇偶性的應用.考查了學生分析和推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當x∈[0,
π
2
]
時,f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、定義在R上的偶函數(shù)f(x),當x≥0時有f(2+x)=f(x),且x∈[0,2)時,f(x)=2x-1,則f(2010)+f(-2011)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個不相等的銳角,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);
②f(x)的圖象關于x=l對稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號是
①②④
①②④
.(請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當x≥0時,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫出函數(shù)的圖象;
(Ⅱ)寫出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案