精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,曲線C1的參數方程為(α為參數),直線C2的方程為,以O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1和直線C2的極坐標方程;

(2)若直線C2與曲線C1交于A,B兩點,求

【答案】(1)極坐標方程為,(2) .

【解析】

試題(1)根據極坐標和直角坐標的互化公式得極坐標方程為ρ2﹣4ρcosθ﹣4ρsinθ+7=0

直線C2的方程為y= ,極坐標方程為 ;(2)直線C2與曲線C1聯立,可得ρ2﹣(2+2 )ρ+7=0,

(1)曲線C1的參數方程為 (α為參數),直角坐標方程為(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,極坐標方程為ρ2﹣4ρcosθ﹣4ρsinθ+7=0

直線C2的方程為y= ,極坐標方程為 ;

(2)直線C2與曲線C1聯立,可得ρ2﹣(2+2 )ρ+7=0,

設A,B兩點對應的極徑分別為ρ1,ρ2,則ρ12=2+2,ρ1ρ2=7,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,

1)判斷的單調性,并證明之;

2)若存在實數,使得函數在區(qū)間上的值域為,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對?(每兩條組成一對)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為抑制房價過快上漲和過度炒作,各地政府響應中央號召,因地制宜出臺了系列房價調控政策.某市為擬定出臺房產限購的年齡政策為了解人們對房產限購年齡政策的態(tài)度,對年齡在歲的人群中隨機調查100人,調查數據的頻率分布直方圖和支持房產限購的人數與年齡的統計結果如下:

年齡

支持的人數

15

5

15

28

17

1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過的前提下認為以44歲為分界點的不同人群對房產限購年齡政策的支持度有差異;

44歲以下

44歲及44歲以上

總計

支持

不支持

總計

2)若以44歲為分界點,從不支持房產限購的人中按分層抽樣的方法抽取8人參加政策聽證會.現從這8人中隨機抽2人.

①抽到1人是44歲以下時,求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數為X,求隨機變量X的分布列及數學期望.

參考數據:

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內,則稱這個輪胎是標準輪胎.

(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標準輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數,函數

1)當函數圖象與軸相切時,求實數的值;

2)若函數恒成立,求實數的取值范圍;

3)當時,討論函數在區(qū)間上的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某班學生喜好體育運動是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

喜好體育運動

不喜好體育運動

男生

5

女生

10

已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數為6

1)請將上面的列聯表補充完整;

2)能否在犯錯概率不超過0.01的前提下認為喜好體育運動與性別有關?說明你的理由;

3)在上述喜好體育運動的6人中隨機抽取兩人,求恰好抽到一男一女的概率.

參考公式:

獨立性檢驗臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個盒子里裝有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同

從盒子中隨機取出2個球,求取出的2個球顏色相同的概率.

從盒子中隨機取出4個球,其中紅球個數分別記為X,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內接正方形PQRS為一水池,其余的地方種花.,,設的面積為,正方形PQRS的面積為.

1)用a表示;

2)當a為定值,變化時,求的最小值,及此時的.

查看答案和解析>>

同步練習冊答案