【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)

【答案】D
【解析】解:要使函數(shù)f(x)= 有意義,
只需x≥0,且2﹣x>0,2﹣x≠1,
解得0≤x<1或1<x<2.
即定義域?yàn)閇0,1)∪(1,2),
故選:D.
【考點(diǎn)精析】利用函數(shù)的定義域及其求法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)g(x)=3x , h(x)=9x
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,并根據(jù)

(1)寫出函數(shù)f(x)(x∈R)的增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一學(xué)生周末的“閱讀時(shí)間”,從高一年級(jí)中隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)査,獲得了每人的周末“閱讀時(shí)間”(單位:小時(shí)),按照分成組,制成樣本的頻率分布直方圖如圖所示:

(Ⅰ)求圖中的值;

(Ⅱ)估計(jì)該校高一學(xué)生周末“閱讀時(shí)間”的中位數(shù);

(Ⅲ)用樣本頻率代替概率. 現(xiàn)從全校高一年級(jí)隨機(jī)抽取名學(xué)生,其中有名學(xué)生“閱讀時(shí)間”在小時(shí)內(nèi)的概率為,其中.當(dāng)取最大時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,是同一個(gè)函數(shù)的是(
A.
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(diǎn)(﹣ ,﹣2),圖象上有三個(gè)點(diǎn)A,B,C,它們的橫坐標(biāo)依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),

(1)求f(x)的表達(dá)式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對(duì)于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點(diǎn),Q是雙曲線在第四象限這一分支上的動(dòng)點(diǎn),過點(diǎn)Q作直線,使其與雙曲線y= 只有一個(gè)公共點(diǎn),且與x軸、y軸分別交于點(diǎn)C、D,另一條直線y= x+6與x軸、y軸分別交于點(diǎn)A、B.則
(1)O為坐標(biāo)原點(diǎn),三角形OCD的面積為
(2)四邊形ABCD面積的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案