【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個(gè)人的編號(hào);(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
人 數(shù) | 數(shù) 學(xué) | |||
優(yōu) 秀 | 良 好 | 及 格 | ||
地 理 | 優(yōu) 秀 | 7 | 20 | 5 |
良 好 | 9 | 18 | 6 | |
及 格 | a | 4 | b |
成績分為優(yōu)秀、良好、及格三個(gè)等級;橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是,求 的值:
②在地理成績及格的學(xué)生中,已知,,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
【答案】(1) ,,.(2) ①;. ②
【解析】
(1)根據(jù)給定的隨機(jī)數(shù)表,從第8行第7列的數(shù)開始向右讀,即可得到答案;
(2)①由,解得,進(jìn)而求得;
②由,且,,列舉出基本事件的總數(shù),利用古典概型及其概率的計(jì)算公式,即可求解。
(1)由題意,根據(jù)給定的隨機(jī)數(shù)表,從第8行第7列的數(shù)開始向右讀,最先檢查的3個(gè)人的編號(hào)依次為,,.
(2)①由題意,解得,
又由.
②,
因?yàn)?/span>,,所以,的搭配:,,,,,,,,,,共有10種,
設(shè),時(shí),數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少為事件A,
事件A包括:,,,…,,共有6個(gè)基本事件;
,
數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))與的圖象上存在關(guān)于軸對稱的點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,底面,,直線與底面所成的角為,分別是的中點(diǎn).
(1)求證:直線平面;
(2)若,求證:直線平面;
(3)若,求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B,經(jīng)過點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
-2 | 4 | -2 | 4 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間和對稱中心;
(3)若當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿足Sn﹣2an=n﹣4.
(1)證明{Sn﹣n+2}為等比數(shù)列;
(2)設(shè)數(shù)列{Sn}的前n項(xiàng)和Tn , 比較Tn與2n+2﹣5n的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(b>0)的左、右焦點(diǎn)分別為,其一條漸近線方程為y=x,點(diǎn)P在該雙曲線上,且,則=( )
A. 4 B. 4 C. 8 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的
中點(diǎn).
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2, ,E為CD的中點(diǎn),點(diǎn)F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點(diǎn)F的位置,使得直線EF與平面PDC所成的角和直線EF與平面ABCD所成的角相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com