設(shè)等比數(shù)列
的前
項(xiàng)和為
,且
,
,則
試題分析:由于等比數(shù)列
的前
項(xiàng)和為
,所以
成等比數(shù)列,所以
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
數(shù)列
的通項(xiàng)公式為
,等比數(shù)列
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
;
(3)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
我們把一系列向量
排成一列,稱為向量列,記作
,又設(shè)
,假設(shè)向量列
滿足:
,
。
(1)證明數(shù)列
是等比數(shù)列;
(2)設(shè)
表示向量
間的夾角,若
,記
的前
項(xiàng)和為
,求
;
(3)設(shè)
是
上不恒為零的函數(shù),且對任意的
,都有
,若
,
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
,且
,其中
是不為零的常數(shù).
(1)證明:數(shù)列
是等比數(shù)列;
(2)當(dāng)
時(shí),數(shù)列
滿足
,
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2-a1=8,a3=m.
①當(dāng)m=48時(shí),求數(shù)列{an}的通項(xiàng)公式;
②若數(shù)列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+ +ak+1- (ak+ak-1+ +a1 )=8,k∈N*,求a2k+1+a2k+2+ +a3k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
公比為
等比數(shù)列
的各項(xiàng)都是正數(shù),且
,則
=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知首項(xiàng)
的無窮等比數(shù)列
的各項(xiàng)和等于4,則這個(gè)數(shù)列
的公比是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
等比數(shù)列
中,
,
,則
_______________.
查看答案和解析>>