【題目】已知:中,頂點(diǎn),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是

求點(diǎn)B、C的坐標(biāo);

的外接圓的方程.

【答案】12

【解析】

試題(1)求,點(diǎn)就設(shè),點(diǎn)的坐標(biāo),同時(shí)可以表示出的坐標(biāo),根據(jù),中點(diǎn).兩式聯(lián)立可求出;根據(jù),得到,兩式聯(lián)立可求出.

2)所求的圓經(jīng)過三角形的三個(gè)頂點(diǎn),所以設(shè)出圓的一般方程,,,代入解方程組即可得到所求圓的方程.或者根據(jù)三角形的外接圓的圓心是各邊垂直平分線的交點(diǎn),所以可以根據(jù)(1)中的,和已知的求兩個(gè)邊的垂直平分線,取其交點(diǎn)做圓心,該點(diǎn)到各個(gè)頂點(diǎn)的距離為半徑,求出圓的方程.

試題解析:(1)由題意可設(shè),的中點(diǎn).

因?yàn)?/span>的中點(diǎn)必在直線,代入有

又因?yàn)?/span>在直線上,所以代入有

①②聯(lián)立解得.,

因?yàn)?/span>在直線上,代入有

又因?yàn)橹本,所以有,則有

根據(jù)③④.

2)因?yàn)槿切瓮饨訄A的圓心是各邊垂直平分線的交點(diǎn),

所以找到三角形兩邊的垂直平分線求得的交點(diǎn)就是外接圓的圓心,該點(diǎn)到各頂點(diǎn)的距離就是半徑.

根據(jù)兩點(diǎn),可得斜率為,所以中垂線斜率為,中點(diǎn)為,則中垂線為

同理可得直線的中垂線為⑥,

⑤⑥可得圓心,半徑為,所以外接圓為

法二:(2)設(shè)外接圓的方程為,其中。

因?yàn)槿切蔚膫(gè)頂點(diǎn)都在圓上,所以根據(jù)(1),將三點(diǎn)坐標(biāo)代入有:

解得

外接圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰直角三角形中,,分別是上的點(diǎn),的中點(diǎn)沿折起,得到如圖2所示的四棱椎,其中

證明:平面

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2019年春運(yùn)期間十二個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,給出下列4個(gè)結(jié)論

其中結(jié)論正確的是(

A.深圳的變化幅度最小,北京的平均價(jià)格最高;

B.深圳和廈門往返機(jī)票的平均價(jià)格同去年相比有所下降;

C.平均價(jià)格從高到低位于前三位的城市為北京,深圳,廣州;

D.平均價(jià)格的漲幅從高到低位于前三位的城市為天津,西安,上海.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某市主辦的科技知識(shí)競(jìng)賽的學(xué)生成績(jī)中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù);

(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選取2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)滿足約束條件

1)若點(diǎn)在上述不等式所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是一個(gè)容量為20的樣本數(shù)據(jù)分組后的頻率分布表:

分組

[8.5,11.5]

[11.5,14.5]

[14.5,17.5]

[17.5,20.5]

頻數(shù)

4

2

6

8

(I)若用組中值代替本組數(shù)據(jù)的平均數(shù),請(qǐng)計(jì)算樣本的平均數(shù);

(II)以頻率估計(jì)概率,若樣本的容量為2000,求在分組[14.5,17.5)中的頻數(shù);

()若從數(shù)據(jù)在分組[8.5,11.5)與分組[11.5,14.5)的樣本中隨機(jī)抽取2個(gè),求恰有1個(gè)樣本落在分組[11.5,14.5)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為何值時(shí),方程組

1)有一個(gè)實(shí)數(shù)解,并求出方程組的解集;

2)有兩個(gè)不相等的實(shí)數(shù)解;

3)沒有實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足約束條件且向量,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,底面ABC為等腰直角三角形,,,M是側(cè)棱上一點(diǎn),設(shè),用空間向量知識(shí)解答下列問題.

1,證明:;

2,求直線與平面ABM所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案