已知數(shù)列的前n項和為,,且(),數(shù)列滿足,,對任意,都有。
(1)求數(shù)列、的通項公式;
(2)令.
①求證:;
②若對任意的,不等式恒成立,試求實數(shù)λ的取值范圍.
(1),;(2)。
解析試題分析:(1)根據(jù)利用求出數(shù)列的遞推關(guān)系式,再利用累乘法數(shù)列的通項公式;(2)利用錯位相減法求出,易知,再根據(jù)數(shù)列的單調(diào)性可知;
(3)把代入整理得,然后參變量分離
得,構(gòu)造函數(shù),求的最大值,或者是直接構(gòu)造函數(shù)
,然后對二次項系數(shù)進(jìn)行討論,轉(zhuǎn)化為求二次函數(shù)最值問題。
(1),
∵,∴ (),
兩式相減得,()
∴,即( ),
∴(),
又,也滿足上式,故數(shù)列的通項公式()。
由,知數(shù)列是等比數(shù)列,其首項、公比均為,
∴數(shù)列的通項公式。
(2)(1)∴ ①
∴ ②
由①-②,得,
∴
又恒正,
故是遞增數(shù)列,, ∴ 。
又不等式
即,即()恒成立.
方法一:設(shè)(),
當(dāng)時,恒成立,則滿足條件;
當(dāng)時,由二次函數(shù)性質(zhì)知不恒成立;
當(dāng)時,由于對稱軸,則在上單調(diào)遞減,
恒成立,則滿足條件,
綜上所述,實數(shù)λ的取值范圍是。
方法二:也即
科目:高中數(shù)學(xué) 來源: 題型:填空題
對大于或等于的自然數(shù)的次方冪有如下分解方式:
根據(jù)上述分解規(guī)律,則, 若的分解中最小的數(shù)是73,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若數(shù)列滿足(其中d為常數(shù),),則稱數(shù)列為“調(diào)和數(shù)列”,已知數(shù)列為調(diào)和數(shù)列,且,則的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,對總有成立,
(1)計算的值;
(2)根據(jù)(1)的結(jié)果猜想數(shù)列的通項,并用數(shù)學(xué)歸納法證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}中,a5=12,a20=-18.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足:,公比,數(shù)列的前項和為,且.
(1)求數(shù)列和數(shù)列的通項和;
(2)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com