【題目】已知是定義在上的奇函數(shù),且.

1)求的解析式;

2)判斷的單調性,并證明你的結論;

3)解不等式 .

【答案】1;(2上單調遞增,證明見解析;(3.

【解析】

1)根據(jù)題意,由奇函數(shù)的性質可得,又由,可得的值,代入函數(shù)的解析式即可得答案;
2)設,由作差法分析的大小關系,結合函數(shù)單調性的定義,即可得結論;
3)利用函數(shù)的奇偶性以及單調性,可以將轉化為,解可得的取值范圍,即可得答案.

1)∵上的奇函數(shù),

,

又∵

,解得

;

2上單調遞增,

證明:任意取,且,則

,

,,,

,即,

上單調遞增;

3)∵,

,

易知上的奇函數(shù),

,

,

又由(2)知上的增函數(shù),

,

解得,

∴不等式的解集為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若方程只有一解,求實數(shù)的取值范圍;

(Ⅱ)設函數(shù)若對任意正實數(shù), 恒成立求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù).

1)求函數(shù)的解析式;

2)求不等式的解集;

3)若上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCDA1B1C1D1中,M,N分別是AA1,D1C1的中點,過DM,N三點的平面與正方體的下底面A1B1C1D1相交于直線l.

1)畫出直線l的位置,并簡單指出作圖依據(jù);

2)設lA1B1P,求線段PB1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由實數(shù)組成的集合A具有如下性質:若,那么

1)試問集合A能否恰有兩個元素且?若能,求出所有滿足條件的集合A;若不能,請說明理由;

2)是否存在一個含有元素0的三元素集合A;若存在請求出集合,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,的中點,.

(1)求證:平面;

(2)若異面直線所成角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當時,

(1)求上的解析式;

(2)若,函數(shù),是否存在實數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù),如果存在區(qū)間,同時滿足:內是單調函數(shù);當定義域是時,的值域也是,則稱是該函數(shù)的優(yōu)美區(qū)間”.

1)求證:是函數(shù)的一個優(yōu)美區(qū)間”.

2)求證:函數(shù)不存在優(yōu)美區(qū)間”.

3)已知函數(shù))有優(yōu)美區(qū)間,當a變化時,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模的遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為vablog3 (其中ab是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止時其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

同步練習冊答案