已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任意m,n∈N*都有

①f(m,n+1)=f(m,n)+2;

②f(m+1,1)=2f(m,1).則f(2009,2008)的值為

[  ]
A.

22008+2007

B.

22008+4014

C.

22009+2007

D.

22009+4014

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省鶴崗一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:013

已知f(1-x)=1+x,則f(x)的表達(dá)式為

[  ]

A.f(x)=2-x

B.f(x)=2+x

C.f(x)=x-2

D.f(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省正定中學(xué)2010屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:013

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對(duì)任意m,n∈N*都有

①f(m,n+1)=f(m,n)+2;

②f(m+1,1)=2f(m,1).則f(2009,2008)的值為

[  ]
A.

22008+2007

B.

22008+4014

C.

22009+2007

D.

22009+4014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008屆海南省農(nóng)墾中學(xué)高三數(shù)學(xué)第一次月考、數(shù)學(xué)試題 題型:044

已知函數(shù)

(1)當(dāng)a=1時(shí),判斷f(x)在(0,1)內(nèi)的單調(diào)性,并用單調(diào)性定義加以證明;

(2)當(dāng)x∈(0,+∞)時(shí),f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問(wèn)中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問(wèn)中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來(lái)解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案