(本題滿分14分)
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
(I)證明 平面;
(II)證明平面EFD;
(III)求二面角的大小。
方法一:
(I)證明:連結(jié)AC,AC交BD于O。連結(jié)EO。
底面ABCD是正方形,點(diǎn)O是AC的中點(diǎn)
在中,EO是中位線,。
而平面EDB且平面EDB,
所以,平面EDB。
(II)證明:底在ABCD且底面ABCD,
① 同樣由底面ABCD,得
底面ABCD是正方形,有平面PDC
而平面PDC, ② ………………………………6分
由①和②推得平面PBC 而平面PBC,
又且,所以平面EFD
(III)解:由(II)知,,故是二面角的平面角
由(II)知, 設(shè)正方形ABCD的邊長為,則
在中,
在中,
所以,二面角的大小為
方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn)。設(shè)
(I)證明:連結(jié)AC,AC交BD于G。連結(jié)EG。 依題意得
底面ABCD是正方形, 是此正方形的中心, 故點(diǎn)G的坐標(biāo)為且
。這表明。
而平面EDB且平面EDB,平面EDB。
(II)證明:依題意得。又故
由已知,且所以平面EFD。
(III)解:設(shè)點(diǎn)F的坐標(biāo)為則
從而所以
由條件知,即
解得 。
點(diǎn)F的坐標(biāo)為且
即,故是二面角的平面角。
且
略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動(dòng)點(diǎn)滿足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com