【題目】已知函數(shù)f(x)=ax3+ax2﹣3ax+1的圖象經過四個象限,則實數(shù)a的取值范圍為

【答案】(﹣∞,﹣)∪( , +∞)
【解析】解:∵f(x)=ax3+ax2﹣3ax+1,
∴f′(x)=ax2+2ax﹣3a=a(x﹣1)(x+3),
令f′(x)=0,
解的x=1或x=﹣3,是函數(shù)的極值點,當a>0時,f(﹣3)是極大值,f(1)是極小值,f(﹣3)f(1)<0,當a<0時,f(﹣3)是極小值,f(1)是極大值,f(﹣3)f(1)<0,
所以,要使函數(shù)f(x)的圖象經過四個象限,則f(﹣3)f(1)<0,
∵f(﹣3)=a(﹣3)3+a(﹣3)2﹣3a(﹣3)+1=9a+1,
f(1)=a+a﹣3a+1=1﹣a,
∴(9a+1)(1﹣a)<0,
即(a+)(a﹣)>0,
解的a<﹣ , 或a>
所以答案是:(﹣∞,﹣)∪( , +∞).
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減,以及對函數(shù)的極值與導數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線:上異于原點的動點, 是平面上兩個定點.的縱坐標為時,點到拋物線焦點的距離為.

(1)求拋物線的方程;

2)直線于另一點,直線于另一點,記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知一個八面體的各條棱長為1,四邊形ABCD為正方形,下列說法

①該八面體的體積為;

②該八面體的外接球的表面積為;

E到平面ADF的距離為;

ECBF所成角為60°;

其中不正確的個數(shù)為

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學、外語三門統(tǒng)一高考成績和學生自主選擇的普通高中學業(yè)水平等級性考試科目的成績共同構成.省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調查,調查結果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調查結果繪制的等高條形圖.

(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:

贊成

不贊成

合計

城鎮(zhèn)居民

農村居民

合計

(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形和四邊形所在的平面互相垂直,,,.

求證:(1) 平面

(2) 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校要對如圖所示的5個區(qū)域進行綠化(種花),現(xiàn)有4種不同顏色的花供選擇,要求相鄰區(qū)域不能種同一種顏色的花,則共有___________種不同的種花方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(1)證明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大。

查看答案和解析>>

同步練習冊答案