(本小題滿分16分)如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,公路兩側(cè)排管費(fèi)用為每米1萬(wàn)元,穿過公路的部分的排管費(fèi)用為每米2萬(wàn)元,設(shè)與所成的小于的角為.
(Ⅰ)求矩形區(qū)域內(nèi)的排管費(fèi)用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費(fèi)用及相應(yīng)的角.
(Ⅰ);(Ⅱ)最小費(fèi)用為萬(wàn)元,相應(yīng)的角為.
解析試題分析:(Ⅰ)把,,的長(zhǎng)度分別用表示,分別求出費(fèi)用相加即可;(Ⅱ)對(duì)(Ⅰ)中函數(shù),用導(dǎo)數(shù)為工具,判斷其單調(diào)區(qū)間,求出最小值.
試題解析:(Ⅰ)如圖,過作,垂足為,由題意得,
故有,,. 4分
所以 5分
. 8分
(Ⅱ)設(shè)(其中),
則. 10分
令得,即,得. 11分
列表
所以當(dāng)時(shí)有,此時(shí)有. 15分+ 0 - 單調(diào)遞增 極大值 單調(diào)遞減
答:排管的最小費(fèi)用為萬(wàn)元,相應(yīng)的角. 16分
考點(diǎn):函數(shù)的應(yīng)用、導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若在點(diǎn)處的切線斜率為.
(Ⅰ)用表示;
(Ⅱ)設(shè),若對(duì)定義域內(nèi)的恒成立,
(。┣髮(shí)數(shù)的取值范圍;
(ⅱ)對(duì)任意的,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已函數(shù)是定義在上的奇函數(shù),在上.
(1)求函數(shù)的解析式;并判斷在上的單調(diào)性(不要求證明);
(2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),≤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-alnx,a∈R.
(Ⅰ)當(dāng)f(x)存在最小值時(shí),求其最小值φ(a)的解析式;
(Ⅱ)對(duì)(Ⅰ)中的φ(a),
(。┊(dāng)a∈(0,+∞)時(shí),證明:φ(a)≤1;
(ⅱ)當(dāng)a>0,b>0時(shí),證明:φ′()≤≤φ′().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,,且)的圖象在處的切線與軸平行.
(1)確定實(shí)數(shù)、的正、負(fù)號(hào);
(2)若函數(shù)在區(qū)間上有最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意?若存在,求的所有值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ) 若函數(shù)在處的切線方程為,求實(shí)數(shù)的值.
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com