【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),點(diǎn)在橢圓短軸上,且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過橢圓的右焦點(diǎn)作的平行線,交曲線于兩點(diǎn),求面積的最大值.
【答案】(1);(2).
【解析】分析:(1)由題意布列關(guān)于a,b的方程組,從而得到橢圓的方程;
(2) 設(shè),直線的方程為,與橢圓方程聯(lián)立可得,利用根與系數(shù)的關(guān)系得到,進(jìn)而表示面積,結(jié)合換元法及對(duì)勾函數(shù)的性質(zhì)求最值即可.
詳解:(1)由,知焦點(diǎn)坐標(biāo)為,所以,
由已知,點(diǎn)的坐標(biāo)分別為,
又,于是,
解得,
所以橢圓的方程為;
(2)設(shè),直線的方程為,
由,可得,
則,
所以,
令,則,
所以在上單調(diào)遞增,
所以當(dāng)時(shí),取得最小值,其值為9.
所以的面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)為橢圓上一點(diǎn).
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經(jīng)過橢圓的右焦點(diǎn),與橢圓交于四點(diǎn),求四邊形面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)在曲線上取兩點(diǎn),與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
投保類型 | 浮動(dòng)因素 | 浮動(dòng)比率 |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
(1)根據(jù)上述樣本數(shù)據(jù),估計(jì)一輛普通7座以下私家車(車齡已滿3年)在下一年續(xù)保時(shí),保費(fèi)高于基準(zhǔn)保費(fèi)的概率;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.
①若該銷售商部門店內(nèi)現(xiàn)有6輛該品牌二手車(車齡已滿3年),其中兩輛事故車,四輛非事故車.某顧客在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車中恰好有一輛事故車的概率;
②以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率.該銷售商一次購(gòu)進(jìn)120輛(車齡已滿三年)該品牌二手車,若購(gòu)進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.試估計(jì)這批二手車一輛車獲得利潤(rùn)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某跨國(guó)飲料公司在對(duì)全世界所有人均GDP(即人均純收入)在千美元的地區(qū)銷售該公司A飲料的情況調(diào)查時(shí)發(fā)現(xiàn):該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減.
(1)下列幾個(gè)模擬函數(shù):①;②;③;④(x表示人均GDP,單位:千美元,y表示年人均A飲料的銷售量,單位:L).用哪個(gè)模擬函數(shù)來描述人均A飲料銷售量與地區(qū)的人均GDP關(guān)系更合適?說明理由;
(2)若人均GDP為1千美元時(shí),年人均A飲料的銷售量為,人均為4千美元時(shí),年人均A飲料的銷售量為,把(1)中你所選的模擬函數(shù)求出來,并求出各個(gè)地區(qū)年人均A飲料的銷售量最多是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂教室和一個(gè)圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測(cè)量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測(cè)量的數(shù)據(jù)的不同方案:①測(cè)量∠A,AC,BC;②測(cè)量∠A,∠B,BC;③測(cè)量∠C,AC,BC;④測(cè)量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com