【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
【答案】解:(Ⅰ)asinB= bcosA,由正弦定理可得sinAsinB= sinBcosA, ∵B是三角形內(nèi)角,∴sinB≠0,
∴tanA= ,A是三角形內(nèi)角,
∴A= .
(Ⅱ)∵a= ,b=2,A= .
∴由余弦定理a2=b2+c2﹣2bccosA,可得:7=4+c2﹣2× ,整理可得:c2﹣2c﹣3=0,
解得:c=3或﹣1(舍去),
∴S△ABC= bcsinA= =
【解析】(Ⅰ)利用正弦定理化簡已知條件,通過三角形內(nèi)角求解A的大小即可.(Ⅱ)利用余弦定理可求c的值,通過三角形面積公式即可得解.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】【2016高考山東理數(shù)】平面直角坐標系中,橢圓C: 的離心率是,拋物線E:的焦點F是C的一個頂點.
(I)求橢圓C的方程;
(II)設P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求 的最大值及取得最大值時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖半圓柱的底面半徑和高都是1,面是它的軸截面(過上下底面圓心連線的平面),分別是上下底面半圓周上一點.
(1)證明:三棱錐體積,并指出和滿足什么條件時有
(2)求二面角平面角的取值范圍,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)若上存在兩點,橢圓上存在兩個點滿足: 三點共線, 三點共線且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中,隨機抽取名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖:
(1)求出表中的的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在的選取2名擔任主要發(fā)言人.記這2名主要發(fā)言人年齡在的人數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且,又數(shù)列滿足: .
(1)求數(shù)列的通項公式;
(2)當為何值時,數(shù)列是等比數(shù)列?此時數(shù)列的前項和為,若存在,使m<成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B分別是直線y=x和y=-x上的兩個動點,線段AB的長為,D是AB的中點.
(1)求動點D的軌跡C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,當|PQ|=3時,求直線l的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com