已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動(dòng)點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

(Ⅰ)橢圓C的方程為;(Ⅱ)點(diǎn)M的軌跡方程為,其中.當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、實(shí)軸在軸上的雙曲線滿足的部分;當(dāng)時(shí),點(diǎn)的軌跡方程為,軌跡是兩條平行于軸的線段;當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓滿足的部分;當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓.

解析試題分析:(Ⅰ)由已知可設(shè)橢圓長半軸長及半焦距分別為,于是得由此可解得,進(jìn)而可寫出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)首先設(shè),其中.由已知及點(diǎn)在橢圓上可得,整理得.注意到,令,得.需按討論.在的情形下,點(diǎn)M的軌跡為橢圓,這時(shí)需要注意是否要加上限制條件
試題解析:(Ⅰ)設(shè)橢圓長半軸長及半焦距分別為,由已知得,所以橢圓的標(biāo)準(zhǔn)方程為.     (5分)
(Ⅱ)設(shè),其中.由已知及點(diǎn)在橢圓上可得
整理得,其中.                   (7分)
(i)時(shí),化簡(jiǎn)得,所以點(diǎn)的軌跡方程為,軌跡是兩條平行于軸的線段.                                            (9分)
(ii)時(shí),方程變形為,其中,
當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、實(shí)軸在軸上的雙曲線滿足的部分; (11分)
當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓滿足的部分;  (13分)
當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓.                          (15分)
考點(diǎn):1.橢圓方程的求法;2.軌跡方程的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與橢圓有公共焦點(diǎn),且橢圓過點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)、是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過點(diǎn)、、的圓為⊙,過點(diǎn)作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)、,試問直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,以為圓心的圓相切于點(diǎn),的縱坐標(biāo)為,是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點(diǎn)A,B.
(I)如果直線l過拋物線的焦點(diǎn),求的值;
(II)如果,證明直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,圓,動(dòng)圓與已知兩圓都外切.
(1)求動(dòng)圓的圓心的軌跡的方程;
(2)直線與點(diǎn)的軌跡交于不同的兩點(diǎn)、的中垂線與軸交于點(diǎn),求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次記為,如果線段的長按此順序構(gòu)成一個(gè)等差數(shù)列,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案