已知函數(shù)f(x)=2
3
sinωxcosωx-2cos2ωx+a(x∈R,ω>0)的最小正周期為π,最大值為3.
(Ⅰ)求ω和常數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用三角恒等變換,可求得f(x)=2sin(2ωx-
π
6
)+a-1,依題意,可得ω和常數(shù)a的值;
(Ⅱ)由(Ⅰ)知,f(x)=2sin(2x-
π
6
)+1,利用正弦函數(shù)的單調(diào)性質(zhì)即可求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答: 解:(Ⅰ)f(x)=2
3
sinωxcosωx-2cos2ωx+a
=
3
sin2ωx-cos2ωx+a-1
=2(
3
2
sin2ωx-
1
2
cos2ωx)+a-1
=2sin(2ωx-
π
6
)+a-1,
∵f(x)的最小正周期為π,最大值為3,
=π,ω=1;a+1=3,a=2;
(Ⅱ)由(Ⅰ)知,f(x)=2sin(2x-
π
6
)+1,
由-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ,k∈Z得:kπ-
π
6
≤x≤
π
3
+kπ,k∈Z.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
π
6
,
π
3
+kπ],k∈Z.
點(diǎn)評(píng):本題考查三角函數(shù)中的恒等變換應(yīng)用,求得f(x)=2sin(2ωx-
π
6
)+a-1是關(guān)鍵,考查正弦函數(shù)的周期性、單調(diào)性及最值的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|-1<x<2},B={x|1<x<3},則A∩B=( 。
A、{x|1<x<2}
B、{x|-1<x<3}
C、{x|1<x<3}
D、{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某生物技術(shù)公司研制出一種治療乙肝的新藥,為測(cè)試該藥的有效性(若該藥有效的概率小于90%,則認(rèn)為測(cè)試沒有通過),公司在醫(yī)院選定了2000個(gè)乙肝患者作為樣本分成三組,測(cè)試結(jié)果如下表:
A組B組C組
新藥有效673xy
新藥無效7790z
已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組新藥有效的概率是0.33.
(1)求x的值;
(2)已知y≥465,z≥30,求不能通過測(cè)試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錘P-ABCD的底面為正方形,每題側(cè)棱的長(zhǎng)都等于底面的長(zhǎng),AC∩BD=O,E、F、G分別是PO、AD、AB的中點(diǎn).
(Ⅰ)求證:PC⊥平面EFG;
(Ⅱ)求平面EFG與平面PAB所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形BDFE所在的平面互相垂直,AC交BD于O點(diǎn),M為EF的中點(diǎn),BC=
2
,BF=1
(Ⅰ)求證:BC⊥AF:
(Ⅱ)求證:BM∥平面ACE;
(Ⅲ)求二面角B-AF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x2+ax-2a-3)e3-x
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)于兩個(gè)函數(shù)y=h(x)和y=r(x)及區(qū)間[m,n],若存在x1∈[m,n],x2∈[m,n]使得|h(x1)-r(x2)|<1成立,則稱區(qū)間是函數(shù)y=h(x)和y=r(x)的“非疏遠(yuǎn)區(qū)間”,a>0,g(x)=x2+ax+a2-a+7,若區(qū)間[0,4]是函數(shù)y=f(x)和y=g(x)的“非疏遠(yuǎn)區(qū)間”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)sin
25π
6
+cos
26π
3
+tan(-
25π
4
);
(2)7log72-(2014)0-(3
3
8
)-
2
3
-log3
427

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+a(x+lnx)的圖象都在第一象限,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式:|2x-m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案