已知橢圓E:=1(a>b>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點(diǎn)F2(c,0)到直線l:x=的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且⊥,求出該圓的方程.
(1)=1(2)x2+y2=
【解析】(1)由題知2|F1F2|=|MF1|+|MF2|,
即2×2c=2a,得a=2c.
又由-c=3,解得c=1,a=2,b=.
∴橢圓E的方程為=1.
(2)假設(shè)以原點(diǎn)為圓心,r為半徑的圓滿足條件.
(ⅰ)若圓的切線的斜率存在,并設(shè)其方程為y=kx+m,則r=,r2=,①
由消去y,整理得(3+4k2)x2+8kmx+4(m2-3)=0,設(shè)A(x1,y1),B(x2,y2),有
又∵⊥,∴x1x2+y1y2=0,
即4(1+k2)(m2-3)-8k2m2+3m2+4k2m2=0,化簡得m2= (k2+1),②
由①②求得r2=.
所求圓的方程為x2+y2=.
(ⅱ)若AB的斜率不存在,設(shè)A(x1,y1),則B(x1,-y1),∵⊥,∴·=0,有-=0,=,代入=1,得=.此時仍有r2=||=.
綜上,總存在以原點(diǎn)為圓心的圓x2+y2=滿足題設(shè)條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:選擇題
已知球的半徑為5,球面被互相垂直的兩個平面所截,得到的兩個圓的公共弦長為2,若其中一個圓的半徑為4,則另一個圓的半徑為( )
A.3 B. C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:填空題
高三(1)班共有56人,學(xué)號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:選擇題
某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持的兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有________的把握認(rèn)為“學(xué)生性別與支持該活動有關(guān)系”( )
附:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A.0.1% B.1% C.99% D.99.9%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:填空題
已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:選擇題
已知直線l過拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)A、B到y軸的距離分別為m,n,則m+n+2的最小值為( )
A.4 B.6 C.4 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷2練習(xí)卷(解析版) 題型:填空題
已知sin α-3cos α=0,則=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com