精英家教網 > 高中數學 > 題目詳情
已知為橢圓兩個焦點,為橢圓上一點且,則      (       )
A.3B.9C.4D.5
D

試題分析:橢圓,由橢圓定義知 
點評:橢圓定義:橢圓上的點到兩焦點的距離之和等于定值,在求解橢圓上的點到焦點的距離時,要注意定義的應用
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知有相同兩焦點的橢圓和雙曲線,是它們的一個交點,則的形狀是 (   )
A.銳角三角形B.直角三角形C.鈍有三角形D.等腰三角形

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直角坐標平面上,為原點,為動點,,. 過點軸于,過軸于點,. 記點的軌跡為曲線,
,過點作直線交曲線于兩個不同的點、(點之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

Δ兩個頂點的坐標分別是,邊所在直線的斜率之積等于,求頂點的軌跡方程,并畫出草圖。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,設拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數列;
(2)已知當點的坐標為時,.求此時拋物線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設橢圓和雙曲線的公共焦點為,是兩曲線的一個交點,則=     .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知為拋物線的焦點,點為拋物線內一定點,點為拋物線上一動點,最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點坐標是
A.B.C.D.

查看答案和解析>>

同步練習冊答案