有下列敘述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;
②y=tanx在其定義域內(nèi)為增函數(shù);
③已知α=-6,則角α的終邊落在第四象限;
④平面上有四個互異的點A、B、C、D,且點A、B、C不共線,已知(
DB
+
DC
-2
DA
)•(
AB
-
AC
)=0
,則△ABC是等腰三角形;
⑤若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4].
其中所有正確敘述的序號是
①④
①④
分析:由題意可知,①集合{x∈N|x=
6
a
,a∈N *}
={6,3,2,}
②y=tanx在(-
1
2
π+kπ,
1
2
π+kπ
),k∈Z為增函數(shù)
③已知α=-6,則角α的終邊落在第一象限;
④由已知可得(
AB
+
AC
)•(
AB
-
AC
)=0,則可得AB=AC,可判斷
⑤由已知可知,在函數(shù)f(2x)中有0≤2x≤≤2,從而可求函數(shù)的定義域
解答:解:①集合{x∈N|x=
6
a
,a∈N *}
={6,3,2,},只有四個元素;正確
②y=tanx在(-
1
2
π+kπ,
1
2
π+kπ
),k∈Z為增函數(shù);錯誤
③已知α=-6,則角α的終邊落在第一象限;錯誤
④由(
DB
+
DC
-2
DA
)•(
AB
-
AC
)=0
,可得(
AB
+
AC
)•(
AB
-
AC
)=0,則可得AB=AC,則△ABC是等腰三角形;正確
⑤若函數(shù)f(x)的定義域為[0,2],則在函數(shù)f(2x)中有0≤2x≤≤2,從而的定義域為[0,1].錯誤
正確敘述的序號是①④
故答案為:①④
點評:本題主要考查了集合的表示方法的應用,正切函數(shù)的性質(zhì)的應用,角的終邊位置的判斷,及向量的基本運算、函數(shù)定義域的求解,綜合的知識比較多.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有下列敘述:
①集合中元素的個數(shù)可以無限多;
②任何角都有正切值;
③y=sinx+2的最大值為3
④y=f(x)為奇函數(shù),那么y=f(x)在對稱區(qū)間上的函數(shù)單調(diào)性相同  
上述說法正確的是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列敘述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;
②設(shè)a>0,將
a2
a•
3a2
表示成分數(shù)指數(shù)冪,其結(jié)果是a
5
6
;
③已知函數(shù)f(x)=
1+x2
1-x2
(x≠±1)
,則f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

④設(shè)集合A=[0,
1
2
B=[
1
2
,1]
,函數(shù)f(x)=
x+
1
2
 
(x∈A)
-2x+2 (x∈B)
,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(
1
4
,
1
2
)

其中所有正確敘述的序號是

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆湖北省荊門市高一上學期期末教學質(zhì)量檢測數(shù)學試卷(解析版) 題型:填空題

有下列敘述:

①集合中只有四個元素;

在其定義域內(nèi)為增函數(shù);

③已知,則角的終邊落在第四象限;

④平面上有四個互異的點,且點不共線,已知,則△是等腰三角形;

⑤若函數(shù)的定義域為,則函數(shù)的定義域為.

其中所有正確敘述的序號是                .

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有下列敘述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;
②y=tanx在其定義域內(nèi)為增函數(shù);
③已知α=-6,則角α的終邊落在第四象限;
④平面上有四個互異的點A、B、C、D,且點A、B、C不共線,已知(
DB
+
DC
-2
DA
)•(
AB
-
AC
)=0
,則△ABC是等腰三角形;
⑤若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4].
其中所有正確敘述的序號是______.

查看答案和解析>>

同步練習冊答案