=_____.(a>1,a為常數(shù))

答案:-a
提示:


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某人要建造一面靠舊墻的矩形籬笆,地面面積為24m2、高為1m,舊墻需維修,其它三面建新墻,由于地理位置的限制,籬笆正面的長度x米,不得超過a米(a>1),正面有一扇1米寬的門,其平面示意圖如圖.已知舊墻的維修費用為150元/m2,新墻的造價為450元/m2
(Ⅰ)把籬笆總造價y元表示成x米的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當x為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•馬鞍山二模)設同時滿足條件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是與n無關的常數(shù))的無窮數(shù)列{bn}叫“嘉文”數(shù)列.已知數(shù)列{an}的前n項和Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1).
(1)求{an}的通項公式;
(2)設bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值,并證明此時{
1
bn
}
為“嘉文”數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為{x|x≠kπ,k∈Z},且對于定義域內的任何x、y,有f(x-y)=
f(x)•f(y)+1
f(y)-f(x)
成立,且f(a)=1(a為正常數(shù)),當0<x<2a時,f(x)>0則( 。

查看答案和解析>>

科目:高中數(shù)學 來源:學習高手必修一數(shù)學蘇教版 蘇教版 題型:013

下列對應中是集合A到集合B的映射的個數(shù)為

①A={1,3,5,7,9},B={2,4,6,8,10},對應法則f:x→y=x+1,x∈A,y∈B

②A={x|00<x<90},B={y|0<y<1},對應法則f:x→y=sinx,x∈A,y∈B

③A={x|x∈R},B={y|y≥0},對應法則f:x→y=x2,x∈A,y∈B

[  ]
A.

0

B.

1

C.

2

D.

3

查看答案和解析>>

同步練習冊答案