已知f(x)=
log2(4-x)(x≤0)
f(x-1)-f(x-2)(x>0)
,則f(3)的值為
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(3)=f(2)-f(1)=f(1)-f(0)-f(1)=-f(0)=-log24=-2.
解答: 解:∵f(x)=
log2(4-x)(x≤0)
f(x-1)-f(x-2)(x>0)
,
∴f(3)=f(2)-f(1)
=f(1)-f(0)-f(1)
=-f(0)=-log24=-2.
故答案為:-2.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面上兩條直線x+2y+1=0,x-my=0,如果這兩條直線將平面劃分為三部分,則實(shí)數(shù)m的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3x
3x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的撐血框圖中,如果輸入的n=5,那么輸出的i等于(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=an+3,若an=2014,則n=( 。
A、667B、668
C、669D、672

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
,若f(a)=b,則f(-a)等于( 。
A、b
B、-b
C、
1
b
D、-
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,a、b、c分別是角A、B、C的對(duì)邊,cosA=
5
5
,sinB=
3
10
10

(Ⅰ)求cos(A+B)的值;
(Ⅱ)若a=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+2(k-1)x+k+5(k∈R)
(1)對(duì)任意k∈(-1,1),不等式f(x)<0恒成立,求x的取值范圍;
(2)若函數(shù)在區(qū)間(0,2)內(nèi)有零點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x-1)2+lnx+1.
(Ⅰ)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案