設(shè)函數(shù)y=f(x)與函數(shù)y=f(f(x))的定義域交集為D.若對(duì)任意的x∈D,都有f(f(x))=x,則稱(chēng)函數(shù)f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并說(shuō)明理由;
(2)設(shè)函數(shù)f(x)=log2(1-2x),試求函數(shù)f(x)的反函數(shù)f-1(x),并證明f-1(x)∈M;
(3)若f(X)=
ax
x+b
∈M
(a,b為常數(shù)且a>0),求使f(x)<1成立的x的取值范圍.
(1)因?yàn)閷?duì)任意x∈R,f(f(x))=-(-x+1)+1=x,所以f(x)=-x+1∈M(2分)
因?yàn)間(g(x))=2(2x-1)-1=4x-3不恒等x,所以g(x)∉M
(2)因?yàn)閒(x)=log2(1-2x),所以x∈(-∞,0),f(x)∈(-∞,0)…(5分)
函數(shù)f(x)的反函數(shù)f-1(x)=log2(1-2x),(x<0)…(6分)
又因?yàn)閒-1(f-1(x))=log2(1-2f-1(x))=log2(1-(1-2x))=x…(9分)
所以f-1(x)∈M…(10分)
(3)因?yàn)閒(x)=
ax
x+b
∈M
,所以f(f(x))=x對(duì)定義域內(nèi)一切x恒成立,
a•
ax
x+b
ax
x+b
+b
=x

即解得:(a+b)x2-(a2-b2)x=0恒成立,故a+b=0…(12分)
由f(x)<1,得
ax
x-a
<1即
(a-1)x+a
x-a
<0
…(13分)
若a=1則
1
x-1
<0,所以x∈(-∞,1)…(14分)
若0<a<1,則
x-
a
1-a
x-a
>0
且a<
a
1-a
,所以x∈(-∞,a)∪(
a
1-a
,+∞)…(16分)
若a>1,則
x-
a
1-a
x-a
<0
且a>
a
1-a
,所以x∈(
a
1-a
,a)…(18分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)與函數(shù)g(x)的圖象關(guān)于x=3對(duì)稱(chēng),則g(x)的表達(dá)式為( 。
A、g(x)=f(
3
2
-x)
B、g(x)=f(3-x)
C、g(x)=f(-3-x)
D、g(x)=f(6-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐匯區(qū)一模)設(shè)函數(shù)y=f(x)與函數(shù)y=f(f(x))的定義域交集為D.若對(duì)任意的x∈D,都有f(f(x))=x,則稱(chēng)函數(shù)f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并說(shuō)明理由;
(2)設(shè)函數(shù)f(x)=log2(1-2x),試求函數(shù)f(x)的反函數(shù)f-1(x),并證明f-1(x)∈M;
(3)若f(X)=
axx+b
∈M
(a,b為常數(shù)且a>0),求使f(x)<1成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)與函數(shù)y=f(f(x))的定義域交集為D.若對(duì)任意的x∈D,都有f(f(x))=x,則稱(chēng)函數(shù)f(x)是集合M的元素.
(Ⅰ)判斷函數(shù)f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并說(shuō)明理由;
(Ⅱ)若f(x)=
axx+b
∈M(a,b為常數(shù)且a>0)
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)y=f(x)與函數(shù)y=g(x)的圖象如右圖所示,則函數(shù)y= f(x)·g(x)的圖象可能是

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)y=f(x)與函數(shù)y=g(x)的圖象如右圖所示,則函數(shù)y= f(x)·g(x)的圖象可能是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案