橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

(1) ;(2) .證明見解析.

解析試題分析:(1)設(shè)點,
設(shè)直線 ,代入并整理得
利用


 解得,再由求得.
(2) 首先判斷得出.可通過證明,達到目的.
設(shè),得到,
將直線的方程代入橢圓的方程并整理得到得證.
試題解析:(1)設(shè)點,
設(shè)直線 ,代入并整理得
所以        2分
故有


 解得       5分
又橢圓與雙曲線有公共的焦點,故有
所以橢圓的方程為 .          7分
(2)
證明:設(shè),則,
將直線的方程代入橢圓的方程并整理得
      9分
由題意可知此方程必有一根
 ,
所以    12分
故有 , 即         13分
考點:橢圓的標準方程,平面向量的坐標運算,直線與拋物線的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設(shè)點A關(guān)于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為、為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,右焦點為,右頂點在圓上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,長軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長軸上的一個動點,過作方向向量的直線交橢圓、兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知中心在原點的橢圓的離心率,一條準線方程為
(1)求橢圓的標準方程;
(2)若以>0)為斜率的直線與橢圓相交于兩個不同的點,且線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設(shè)點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

同步練習冊答案