已知函數(shù)
(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

(1)  (2)    (3)

解析試題分析:(1)∵,∴,得          
當(dāng)時(shí), ; 當(dāng)時(shí),。
時(shí)取得極小值,故符合。               
(2)當(dāng)時(shí),對(duì)恒成立,上單調(diào)遞增,
                          
當(dāng)時(shí),由,
,則,∴上單調(diào)遞減。
,則,∴上單調(diào)遞增。          
時(shí)取得極小值,也是最小值,即。
綜上所述,                
(3)∵任意,直線都不是曲線的切線,
對(duì)恒成立,即的最小值大于,
的最小值為,∴,故.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的極值.
點(diǎn)評(píng):深刻理解導(dǎo)數(shù)的幾何意義及熟練利用導(dǎo)數(shù)求極值、最值是解題的關(guān)鍵.分類討論思想和轉(zhuǎn)化思想是解題常用的思想方法,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點(diǎn)和極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù);
(1)若上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中。
(1)若函數(shù)有極值,求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知實(shí)數(shù),函數(shù)
(Ⅰ)若函數(shù)有極大值32,求實(shí)數(shù)的值;
(Ⅱ)若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ) 若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

曲線在點(diǎn)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an
(1)求an;
(2)設(shè),求數(shù)到的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求由曲線所圍成的封閉圖形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

用三段論證明函數(shù)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案