已知圓C:內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線交圓C于A、B兩點(diǎn)。
(1)當(dāng)經(jīng)過(guò)圓心C時(shí),求直線的方程;
(2)當(dāng)弦AB的長(zhǎng)為時(shí),寫出直線的方程。

(1)(2)

解析試題分析:(1)圓心坐標(biāo)為(1,0),,,整理得。 
(2)圓的半徑為3,當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,整理得
,圓心到直線l的距離為
,
解得,代入整理得。                       
當(dāng)直線l的斜率不存在時(shí),直線l的方程為,經(jīng)檢驗(yàn)符合題意。
直線l的方程為。
考點(diǎn):直線方程及直線與圓的位置關(guān)系
點(diǎn)評(píng):當(dāng)直線與圓相交時(shí),圓的半徑,圓心到直線的距離以及弦長(zhǎng)的一半構(gòu)成直角三角形,此直角三角形的求解計(jì)算是經(jīng)常用到的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求與圓外切于點(diǎn),且半徑為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)的圓C與直線相切于點(diǎn).
(1)求圓C的方程;
(2)已知點(diǎn)的坐標(biāo)為,設(shè)分別是直線和圓上的動(dòng)點(diǎn),求的最小值.
(3)在圓C上是否存在兩點(diǎn)關(guān)于直線對(duì)稱,且以為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是圓上的動(dòng)點(diǎn),
(1)求的取值范圍;
(2)若恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線交圓C于A、B兩點(diǎn)。
(1)當(dāng)經(jīng)過(guò)圓心C時(shí),求直線的方程;
(2)當(dāng)弦AB的長(zhǎng)為時(shí),寫出直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知,圓C:,直線.
(1) 當(dāng)a為何值時(shí),直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖:、是單位圓上的點(diǎn),是圓與軸正半軸的交點(diǎn),三角形為正三角形,       且AB∥軸.

(1)求的三個(gè)三角函數(shù)值;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

自點(diǎn)發(fā)出的光線射到軸上,被軸反射,其反射光線所在直線與圓相切,求光線所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C.求:
(Ⅰ)求實(shí)數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案