定義a?b=
a2+b,a>b
a+b2,a≤b
,若a?(-2)=4,則a=
 
考點(diǎn):函數(shù)的值,分段函數(shù)的解析式求法及其圖象的作法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:分類(lèi)討論,利用新定義即可得出.
解答: 解:①當(dāng)a>-2時(shí),由已知可得4=a?(-2)=a2-2,解得a=
6

②當(dāng)a≤-2時(shí),由已知可得4=a?(-2)=a+(-2)2,解得a=0,應(yīng)舍去.
綜上可知:a=
6

故答案為:
6
點(diǎn)評(píng):本題考查了新定義、分類(lèi)討論思想方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過(guò)點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,C,D是圓O上位于AB異側(cè)的兩點(diǎn),證明:∠OCB=∠D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求證:當(dāng)a、b、c為正數(shù)時(shí),(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知x>0,y>0,證明不等式:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的焦點(diǎn)是雙曲線的頂點(diǎn),雙曲線的焦點(diǎn)是橢圓的長(zhǎng)軸頂點(diǎn),若兩曲線的離心率分別為e1,e2,則e1•e2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=xlnx上點(diǎn)P處的切線平行與直線2x-y+1=0,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=2+t
y=3+t
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),則直線l與曲線C的公共點(diǎn)的極徑ρ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F為雙曲線C:x2-my2=3m(m>0)的一個(gè)焦點(diǎn),則點(diǎn)F到C的一條漸近線的距離為( 。
A、
3
B、3
C、
3
m
D、3m

查看答案和解析>>

同步練習(xí)冊(cè)答案