已知
sinα=0.80,,求sin2α,cos2α的值(保留兩個有效數(shù)字).年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:重難點手冊 高中數(shù)學(xué)·必修4(配人教A版新課標(biāo)) 人教A版新課標(biāo) 題型:044
設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),已知不論α、β為何實數(shù),恒有f(sinα)≥0和f(2+cosβ)≤0.
(1)求證:b+c=-1;
(2)求證:c≥3;
(3)若函數(shù)f(sinα)的最大值為8,求b、c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇金練·高中數(shù)學(xué)、全解全練、數(shù)學(xué)必修4 題型:044
已知y=sinx的圖象,經(jīng)過怎樣的變換可以得到下列各函數(shù)的圖象(A>0,m≠0).
(1)y=sin(x+m)
(2)y=sinx+m
(3)y=Asinx
(4)y=sinAx
(5)y=-sinx
(6)y=sin(-x)
(7)y=|sinx|
(8)y=sin|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標(biāo)高二版(必修5) 2009-2010學(xué)年 第11期 總第167期 北師大課標(biāo)版(必修5) 題型:013
已知在第二象限,
sin=,cos=,則實數(shù)m滿足m<-5,或m>3
3<m<9
m=0,或m=8
m=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省廣州市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:013
已知兩個非零向量與,定義|a×b|=|a||b|sin,其中為與的夾角.若=(-3,4),=(0,2),則|a×b|的值為
A.-8
B.-6
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當(dāng)2x-=-,即x=0時,f(x)min=-,
當(dāng)2x-=, 即x=時,f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當(dāng)2x-=-,即x=0時,f(x)min=-, ……………………8分
當(dāng)2x-=, 即x=時,f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com