【題目】已知橢圓,點(diǎn)P(2,0).

(I)求橢圓C的短軸長與離心率;

( II)(1,0)的直線與橢圓C相交于M、N兩點(diǎn),設(shè)MN的中點(diǎn)為T,判斷|TP||TM|的大小,并證明你的結(jié)論.

【答案】短軸長為,離心率為.(Ⅱ)見解析

【解析】分析:由題意可得,于是可得短軸長與離心率.Ⅱ)方法一:通過判斷點(diǎn)P與以MN為直徑的圓的位置關(guān)系可得結(jié)論.方法二:運(yùn)用作差比較的方法判斷大小關(guān)系.

詳解:(I)由題意的橢圓的方程為,

,

∴橢圓C的短軸長為,離心率為

(II)方法1:結(jié)論是:

當(dāng)直線斜率不存在時(shí),

當(dāng)直線斜率存在時(shí),設(shè)直線

消去y整理得

∵直線與橢圓交于兩點(diǎn),

設(shè),

,

∴點(diǎn)P在以MN為直徑的圓內(nèi),

(II)方法2:結(jié)論是

當(dāng)直線斜率不存在時(shí),

當(dāng)直線斜率存在時(shí),設(shè)直線

消去y整理得

∵直線與橢圓交于兩點(diǎn),

設(shè),

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+.

(I)當(dāng)a=時(shí),求函數(shù)f(x)在x=0處的切線方程;

(II)函數(shù)f(x)是否存在零點(diǎn)?若存在,求出零點(diǎn)的個(gè)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠為檢驗(yàn)車間一生產(chǎn)線是否工作正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量尺寸(單位: mm )繪成頻率分布直方圖如圖所示:

(Ⅰ)求該批零件樣本尺寸的平均數(shù) x 和樣本方差 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)若該批零件尺寸 服從正態(tài)分布 ,其中 近似為樣本平均數(shù) 近似為樣本方差 ,利用該正態(tài)分布求 ;

(Ⅲ)若從生產(chǎn)線中任取一零件,測量尺寸為30mm,根據(jù) 原則判斷該生產(chǎn)線是否正常?

附: ;若 , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個(gè)球都不取、“a”表示取出一個(gè)紅球,而“ab”則表示把紅球和藍(lán)球都取出來.以此類推,下列各式中,其展開式可用來表示從5個(gè)無區(qū)別的紅球、5個(gè)無區(qū)別的藍(lán)球、5個(gè)有區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( 。
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線的焦點(diǎn),A、B是拋物線C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).

(I)若直線AB經(jīng)過焦點(diǎn)F,且斜率為2,求線段AB的長度|AB|;

(II)當(dāng)OAOB時(shí),求證:直線AB經(jīng)過定點(diǎn)M(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), ,已知處有相同的切線.

(1)求, 的解析式;

(2)求上的最小值;

(3)若對 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面ABCD是平行四邊形,PA⊥平面ABCDMAD的中點(diǎn),NPC的中點(diǎn).

1)求證:MN∥平面PAB

2)若平面PMC⊥平面PAD,求證:CMAD

3)若平面ABCD是矩形,PA=AB,求證:平面PMC⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案