精英家教網 > 高中數學 > 題目詳情

如圖,已知直線與拋物線相切于點)且與軸交于點為坐標原點,定點B的坐標為.

(1)若動點滿足|=,求點的軌跡.

(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點,試求面積之比的取值范圍.

 

【答案】

(1) (2)

【解析】

試題分析:解:(I)由,

∴直線的斜率為,

的方程為,∴點A坐標為(1,0)       

   則,

整理,得      

∴動點M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2

的橢圓.     

(II)如圖,由題意知直線的斜率存在且不為零,

方程為y=k(x-2)(k≠0)①

將①代入,整理,得

,

.  設

 ②  

,由此可得

由②知

.∴△OBE與△OBF面積之比的取值范圍是

考點:橢圓的方程

點評:關于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結合起來,當涉及到交點時,常用到根與系數的關系式:)。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數學 題型:填空題

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數學 題型:解答題

(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數學 來源:山東省月考題 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y﹣1)2=1交于A、C、D、B四點,試證明|AC||BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分15分)

        已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5。

   (I)求拋物線G的方程;

   (II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓交于A、C、D、B四點,試證明為定值;

 
   (III)過A、B分別作拋物G的切線交于點M,試求面積之和的最小值。

查看答案和解析>>

同步練習冊答案