為實(shí)數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值.
⑴ (2) 最大值為最小值為
【解析】
試題分析:⑴將括號打開函數(shù)變成多項(xiàng)式函數(shù)來求導(dǎo)數(shù);也可利用積的導(dǎo)數(shù)法則來求解;(2)由結(jié)合(1)的結(jié)果可求出a值,從而獲得的具體解析式,進(jìn)而獲得導(dǎo)數(shù),令其等于零,求得其可能極值,并求出端點(diǎn)的函數(shù)值,比較其大小就可求出在[-2,2] 上的最大值和最小值.
試題解析:⑴由原式得∴
⑵由 得,
此時(shí)有.
由得或x=-1 ,
又
所以f(x)在[-2,2]上的最大值為最小值為
考點(diǎn):1.函數(shù)求導(dǎo);2.函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是( )
A.假設(shè)至少有一個(gè)鈍角 B.假設(shè)至少有兩個(gè)鈍角
C.假設(shè)沒有一個(gè)鈍角 D.假設(shè)沒有一個(gè)鈍角或至少有兩個(gè)鈍角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
若關(guān)于的不等式的解集為,則實(shí)數(shù)的值為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知g(x)為三次函數(shù)f(x)=x3+x2-2ax(a≠0)的導(dǎo)函數(shù),則它們的圖象可能是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古包頭市高二下學(xué)期期中Ⅰ理科數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)在處的切線方程___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角為,且tan=
(1)寫出直線l的一個(gè)參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A,B,求點(diǎn)P到A,B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖所示, 四邊形ABCD和四邊形分別是矩形和平行四邊形,其中點(diǎn)的坐標(biāo)分別為A(-1,2),B(3,2),C(3,-2),D(-1,-2),(3,7),(3,3).求將四邊形ABCD變成四邊形的變換矩陣M.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com