【題目】已知,是兩條不同直線,,是兩個不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程。
在平面直角坐標系xOy中,已知曲線,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點P,使點P到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)有兩個定點A(1,0),B(1,﹣2),設點P到A、B的距離分別為,且
(I)求點P的軌跡C的方程;
(II)是否存在過點A的直線與軌跡C相交于E、F兩點,滿足(O為坐標原點).若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項為和Sn,點(n,)在直線y=x+上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列的前項和
(3)設nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列變化過程中,變量之間不是函數(shù)關系的為( )
A.地球繞太陽公轉的過程中,二者間的距離與時間的關系
B.在銀行,給定本金和利率后,活期存款的利息與存款天數(shù)的關系
C.某地區(qū)玉米的畝產(chǎn)量與灌溉次數(shù)的關系
D.近年來中國高鐵年運營里程與年份的關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”。根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是 ( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知等邊中,,分別為,邊的中點,為的中點,為邊上一點,且,將沿折到的位置,使平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點為,,離心率為,點,在橢圓上,在線段上,且的周長等于.
(1)求橢圓的標準方程;
(2)過圓上任意一點作橢圓的兩條切線和與圓交于點,,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com