函數(shù)f(x)=ex-1的值域是
 
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由指數(shù)函數(shù)的值域得到ex的范圍,加-1后可得函數(shù)f(x)=ex-1的值域.
解答: 解:∵ex∈(0,+∞),
∴ex-1∈(-1,+∞),
∴函數(shù)f(x)=ex-1的值域是(-1,+∞).
故答案為:
點(diǎn)評:本題考查了指數(shù)函數(shù)的值域,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為正實(shí)數(shù),求證:
a2
b2-bc+c2
+
b2
a2-ac+c2
+
c2
a2-ab+b2
≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,周期為π且為偶函數(shù)的是( 。
A、y=cos(2x-
π
2
B、y=sin(2x+
2
C、y=sin(x+
π
2
D、y=cos(x+π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求中心在原點(diǎn),對稱軸為坐標(biāo)軸,且經(jīng)過A(
3
,-2
)和B(-2
3
,1),兩點(diǎn)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
1-ex
1+ex
;
(2)y=
3x
x2+4
;
(3)y=x-2
1-x
+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2-2>a;命題q:?x∈R,x2-4x+a≤0.若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
(x-2)(2x+a)
x
為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為R上可導(dǎo)函數(shù),且對?x∈R都有f(2x)=x3f′(1)-10x成立,則函數(shù)y=f(x),x∈[-1,1]的值域?yàn)椋ā 。?/div>
A、RB、[-6,6]
C、[0,6]D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,其離心率為
2
2
,且與x軸的一個(gè)交點(diǎn)為(1,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知橢圓C過點(diǎn)(0,
2
2
),P是橢圓C上任意一點(diǎn),在點(diǎn)P處作橢圓C的切線l,F(xiàn)1,F(xiàn)2到l的距離分別為d1,d2.探究:d1•d2是否為定值?若是,求出定值;若不是說明理由(提示:橢圓mx2+ny2=1在其上一點(diǎn)(x0,y0)處的切線方程是mx0x+ny0y=1);
(3)求(2)中d1+d2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案