設奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(2)=0,則不等式
f(x)-f(-x)
x
>0的解集是( 。
A、(-2,0)∪(2,+∝)
B、(-∝,-2)∪(0,2)
C、(-2,0)∪(0,2)
D、(-∝,-2)∪(2,+∝)
考點:函數(shù)單調性的性質
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)奇偶性和單調性之間的關系即可得到結論.
解答: 解:∵奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(2)=0,
∴函數(shù)f(x)在(-∞,0)上為減函數(shù),且f(-2)=f(2)=0,
作出函數(shù)f(x)的草圖如圖:
∵f(x)是奇函數(shù),∴不等式等價為
2f(x)
x
>0
,
x>0
f(x)>0
x<0
f(x)<0
,
則0<x<2或-2<x<0,
故不等式
f(x)-f(-x)
x
>0的解集是(-2,0)∪(0,2),
故選:C
點評:本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調性之間的關系,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在(-1,1)上有定義,且f(
1
5
)=
1
2
.對任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),當且僅當-1<x<0時,f(x)>0.
(1)判斷f(x)在(-1,1)上的奇偶性,并說明理由;
(2)判斷f(x)在(0,1)上的單調性,并說明理由;
(3)試求f(
1
2
)-f(
1
11
)-f(
1
19
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+(a-2)x+1為偶函數(shù),g(x)=
x-3+b
x2+2
為奇函數(shù),則
1
ab
a
1
b
的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長方體截去一個四棱錐,得到的幾何體如圖所示,則該幾何體的左視圖為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正方體的頂點都在球面上,它的棱長是4cm,這個球的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b,c>d,則下列不等式成立的是( 。
A、b+d<a+c
B、ac>bd
C、
a
c
d
b
D、a-c>b-d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
x2-ax+a(x<0)
(4-2a)x(x≥0)
是R上的單調函數(shù),則實數(shù)a的取值范圍是( 。
A、[0,2)
B、(
3
2
,2)
C、[1,2]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,k),若
a
b
共線,則|3
a
+
b
|=( 。
A、3
B、4
C、
5
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≤0時,f(x)=x2+2x.函數(shù)f(x)在y軸左側的圖象如圖所示.
(1)寫出函數(shù)f(x),x∈R的解析式;
(2)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最大值.

查看答案和解析>>

同步練習冊答案