設(shè)集合A={x|2x≤4},集合B={x|y=lg(x-1)},則A∩B等于(  )
A、(1,2)
B、[1,2]
C、[1,2)
D、(1,2]
考點(diǎn):對數(shù)函數(shù)的定義域,交集及其運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:解指數(shù)不等式求出集合A,求出對數(shù)函數(shù)的定義域即求出集合B,然后求解它們的交集.
解答: 解:A={x|2x≤4}={x|x≤2},
由x-1>0得x>1
∴B={x|y=lg(x-1)}={x|x>1}
∴A∩B={x|1<x≤2}
故選D.
點(diǎn)評:本題考查指數(shù)不等式的解法,交集及其運(yùn)算,對數(shù)函數(shù)的定義域,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+
1
3
an=1(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求使Tn
503
1007
成立的最小的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-2x-3=0},B={x|ax-1=0},若B
?
A,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,命題q:x2-2x-a>0在x∈[3,4]上恒成立.如果p或q為真,p且q為假,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式可以是( 。
A、f(x)=x-sinx
B、f(x)=
cosx
x
C、f(x)=2xcosx
D、f(x)=x•(|x|-
π
2
)•(|x|-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C的對邊分別是a,b,c,已知
3
2
sin2A=sinCcosB+sinBcosC.
(1)求sinA的值;
(2)若a=1,cosB+cosC=
2
3
3
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
 
(寫序號)
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”:
②函數(shù)f(x)=cos2ax-sin2ax的最小正周期為“π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:-2≤x≤11,q:1-3m≤x≤3+m(m>0),若?p是?q的必要不充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足an+12=4Sn+4n-3,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)記數(shù)列{bn}的前n項(xiàng)和為Tn,若對任意的n∈N*,(Tn+
3
2
)k≥3n-6恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案